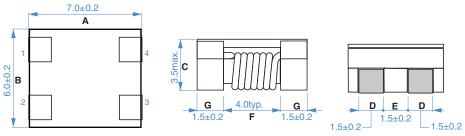
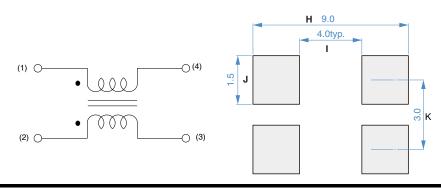


High Current Common Mode Choke

Features


- Surface mountable (multiple case sizes), high current common mode choke for DC power line
- Base terminals are treated, allows for easy mounting on PCB
- · Paired wire coil for high stability
- Optimized for transmission of high quality signals
- Operating temperature: -40 °C to +125 °C
- Rated Current: Based on temp. rise; ∆T: 40 °C, typical
- Material categorization: For definitions of compliance please see

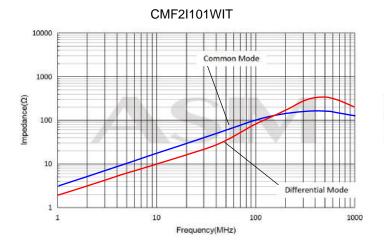
Application

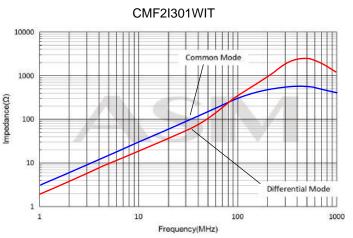

- LAN's, telephones, personal computers
- CD-ROM drives, electronic games
- Other electronic devices

TANDARD ELECTRICAL SPECIFICATIONS						
PART NUMBER	COMMON MODE IMPEDANCE AT 100 MHz (Ω)typ	RATED VOLTAGE MAX. (V _{DC})	RATED CURRENT MAX. (mA)	DC RESISTANCE MAX. (Ω)	INSULATION RESISTANCE MIN. (MΩ)	
CMF2I101WIT	100	80	9000	0.010	10	
CMF2I301WIT	300	80	5000	0.010	10	
CMF2I501WIT	500	80	5000	0.012	10	
CMF2I701WIT	700	80	4000	0.015	10	
CMF2I102WIT	1000	80	3000	0.017	10	
CMF2I132WIT	1300	80	2500	0.021	10	
CMF2I302WIT	3000	80	800	0.060	10	

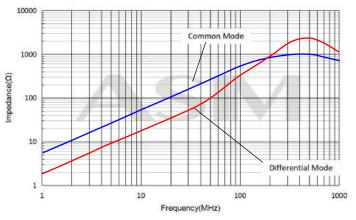
Dimension (mm)

PART NUMBER	А	В	С	D	E	F	G
CMF2I Series	$\begin{array}{c} 0.276 \pm 0.008 \\ [7.0 \pm 0.2] \end{array}$		0.138 [3.5] max.	$\begin{array}{c} 0.059 \pm 0.008 \\ [1.5 \pm 0.2] \end{array}$		0.157 [4.0] typ.	0.059 ± 0.008 [1.5 ± 0.2]

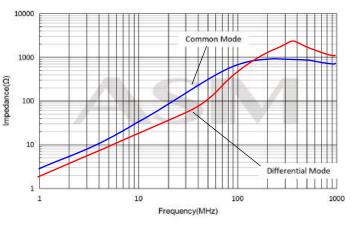


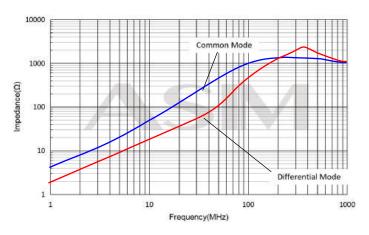

Recommended Footprint(mm)

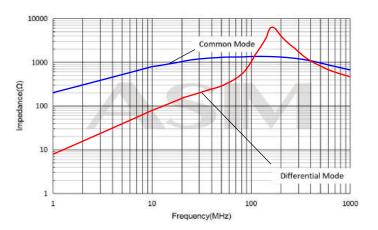
7060	Dimensions
Н	9.0 ref
Ι	4.0 ref
J	1.5 ref
K	3.0 ref

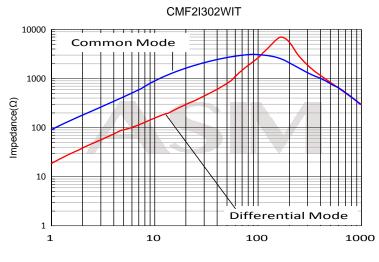


Performance Curves

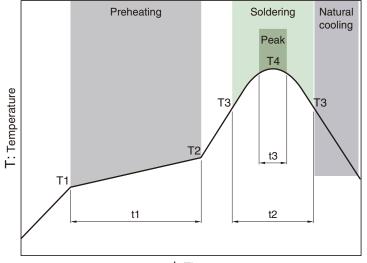





CMF2I701WIT



CMF2I132WIT



Frequency(MHz)

t: Time

Preheating			Solderin	g	Peak	Peak	
Temp.		Time	Temp.	Time	Temp.	Time	
T1	T2	t1	Т3	t2	Τ4	t3	
150°C	180°C	60 to 120s	230°C	25 to 35s	250°C	5s	

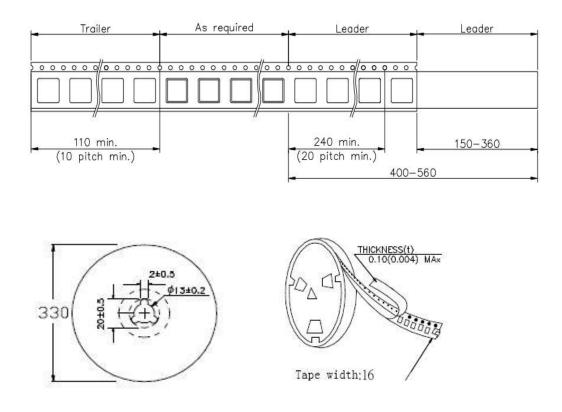
RELIABLITY TEST METHOD

• ELECTRIC

NO.	Test items	Standard	Experiment Method
1	Temperature characteristics	ΔL/L 20°C ≤ ±10%	The test should be done after the sample has stabilized in the ring The temperature of the product is -40 to +125 °C, and the L (Δ L) value of the product is the same as the original L value. Suitable for normal temperature and humidity should be Δ L / L 20 ° C ≤ ± 10 %.
2	Load test	The product must not have any damage, such as smoke or sparks	1.2 times the rated current, the time is 5 minutes

ENVIRONMENTAL CHARACTERISTICS

NO.	Test items	Standard	Experiment Method	
1	Reflow soldering	Do not have any damage or problems	Reflow of temperature distribution Before the heat: 150-180 °C, Times 60 to 120sec Peak temperature: 250 \pm 5 °C, Times 5 sec Hold temperature: 230 \pm 5 °C, Times 30 \pm 5 sec $\frac{250 \pm 5 ^{\circ}C}{230 ^{\circ}C}$	
2	Solderability		The solder surface is immersed in flux and then immersed in furnace at 235 \pm 5 $^\circ\text{C}$ for 5 seconds	
3	Low temperature storage	there should be no	The sample should be left for 96 \pm 4 hours at a temperature of -40 \pm 3 °C and returned to the normal temperature range of 1 hour after completion of the test.) 90-95%.	
4	High temperature storage	there should be no	The sample should be left for 96 \pm 4 hours at a temperature of 125 \pm 3 °C. The test should be carried out after returning to normal temperature range for 1 hour.	
5	Constant hot and humid	there should be no	no to 90% humidity (RH). The test is resumed after 1 hour in the	
6	Temperature cycle	1, no visible mechanical damage. 2, the value of change is less than 10%. 3, the resistance value of less than 5%	In the -25 °C to +85 °C between the respective keep 15min, transit time ≤1min, the number of cycles 5 times, recovery time: 24h test finished (recovery time at least 4h)	
7	vibration	There should be no mechanical damage	The sample should be soldered to the printed circuit board When the vibration has an amplitude and 1.5 mm Frequency from 10-55Hz / 1 minute, repeated should be applied three directions (X, Y, Z) for 2 hours, a total of 6 hours	
8	Impact resistance (MIL-STD-202G Method 213B)	DC resistance change: ± 10% within the appearance of no obvious	$Acceleration$ $US() m/s^2(100a)$	



9	Thermal shock (MIL-STD-202G Method 107G)	Change in inductance: within ± 10% DC resistance change: ± 10% within the appearance of no obvious abnormalities, should not have mechanical damage.	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
10	Wet heat resistance (MIL-STD-202G Method 106G)	Change in inductance: within ± 10% DC resistance change: ± 10% within the appearance of no obvious abnormalities, should not have mechanical damage.	Humidity 90%±10%RH Time 500±24 hours
11	Low temperature life (IEC68-2-1Ad)	Change in inductance: within ± 10% DC resistance change: ± 10% within the appearance of no obvious abnormalities, should not have mechanical damage.	Time 500±24 hours
12	Low temperature load life (IEC68-2-1Ad)	Change in inductance: within ± 10% DC resistance change: ± 10% within the appearance of no obvious abnormalities, should not have mechanical damage.	1000 24 00005
13	Damp heat load (MIL-STD-202G Method 108A)	Change in inductance: within ± 10% DC resistance change: ± 10% within the appearance of no obvious abnormalities, should not have mechanical damage.	Temperature $60\pm2^{\circ}C$ Humidity $90\sim95\%$ RHTime 500 ± 24 bours

14	High temperature life test (IEC68-2-2Ba)	DC resistance change: ± 10% within the appearance of no obvious	The test sample shall be soldered to the test substrate by reflow soldering. The test sample shall be placed in a constant temperature and humidity tank and the current shall not be supplied at the temperature specified in the table. Temperature 125±3°C Time 500±24 hours Recovery: 2 hours of recovery in standard condition and subsequent testing within 48 hours.
15	High temperature load life test (MIL-STD-202G Method 108A)	DC resistance change: ± 10% within the appearance of no	The test sample shall be soldered to the test substrate by reflow soldering. The Temperature 85±2°C Plus load current Rated current Time 2000±24 hours Hourly power time 3/4 power Recovery: 2 hours of recovery in standard condition and subsequent testing within 48 hours.

Reel Dimmension&Tape Dimension (mm)

